LANGMUIR APPLICATIONS LIST - [LP16]

LANGMUIR PROBE SYSTEM

The Impedans' Langmuir Probe system is used by academia and industry globally for plasma characterisation.

Below is a list of publications with their plasma sources, process gases, pressures and applications. There are over 130 publications now available in total, watch this space for the complete list.

Plasma Source	Density (m ⁻³)	Gas	Pressure(mTorr)	Published Paper
2.45GHz Surface Wave	10 ¹¹ -> 10 ¹⁵	N ₂ ,N ₂ /O ₂	6000	Electrical characterization of the flowing afterglow of N2 and N2/O2 microwave plasmas at reduced pressure
ССР	10 ¹⁴ -> 10 ¹⁵	Ar+C	11.3	Suppression of a spontaneous dust density wave by a modulation of ion streaming
ССР	10 ¹⁵ -> 10 ¹⁶	Ar	60 -> 400	Plasma parameters of RF capacitively coupled discharge comparative study between a plane cathode and a large hole
ССР	1016	-	<75	Analysis of double-probe characteristics in low-frequency gas discharges and its improvement
ССР	1015	N ₂	100 -> 1000	Capacitively coupled radio frequency nitrogen plasma generated at two different exciting frequencies of 13.56 MHz and 40 MHz
ССР	10 ¹⁶ -> 10 ¹⁷	Ar	200 -> 500	Plasma parameters in 40 MHz Argon discharge
Hall Thruster	10 ¹⁵ -> 10 ¹⁸	Xe	13.5 -> 45	Anode geometry influence on LaB6 cathode discharge characteristics
Hall Thruster	10 ¹⁵ -> 10 ¹⁶	Ar	30	Measurement of plasma parameters in the far-field plume of a Hall effect thruster
Hall Thruster	10 ¹⁶ -> 10 ¹⁷	Xe	0.0015	Electron flow properties in the far-field plume of a Hall thruster
Hall Thruster	10 ¹⁵ -> 10 ¹⁶	Xe,Kr	0.0225	Time-resolved measurement of plasma parameters in the far- field plume of a low-power Hall effect thruster
Hall Thruster	1016	Xe	0.015	The time-varying electron energy distribution function in the plume of a Hall thruster
Hall Thruster	10 ¹⁶ -> 10 ¹⁸	Xe	0.015	Electron energy distribution function in a low-power Hall thruster discharge and near-field plume
Helicon	10 ¹⁶ -> 10 ¹⁷	Ar	2.6	Two density peaks in low magnetic field helicon plasma
Helicon	10 ¹⁵ -> 10 ¹⁶	Ar	2.62	Modulation of absorption manner in helicon discharges by changing profile of low axial magnetic field*
HiPIMS	10 ¹⁶ -> 10 ¹⁷	Ar,Cr	0.5 -> 20	Spectroscopic investigation on the near-substrate plasma characteristics of chromium HiPIMS in low density discharge
HiPIMS	10 ¹³ -> 10 ¹⁷	Ar,O ₂ ,Ti	6.98	The behaviour of negative oxygen ions in the afterglow of a reactive HiPIMS discharge
HiPIMS	10 ¹⁶ -> 10 ¹⁸	Ar,O ₂ ,Ti	5.63	Design of magnetic field configuration for controlled discharge properties in highly ionized plasma
HiPIMS	10 ¹⁵ -> 10 ¹⁶	Ar,O ₂ ,Al	1.5	Investigating the plasma parameters and discharge asymmetry in dual magnetron reactive high power impulse magnetron sputtering discharge with Al in Ar/O2 mixture

1

HiPIMS	10 ¹⁶ -> 10 ¹⁷	Ar,O ₂ ,Ti	7.5	Angular dependence of plasma parameters and film properties during high power impulse magnetron sputtering for deposition
HiPIMS	10 ¹⁶ -> 10 ¹⁸	Ar,O ₂ ,Ti	5.63	Enhanced oxidation of TiO2 films prepared by high power impulse magnetron sputtering running in metallic mode
HiPIMS - ECWR	< 10 ¹⁸	Ar,O ₂ ,Ti	0.6 -> 75	Deposition of rutile (TiO2) with preferred orientation by assisted high power impulse magnetron sputtering
HiPIMS - ECWR	10 ¹⁶ -> 10 ¹⁸	Ar,Ti	0.375	Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma
Hot Cathode Magnetic Filter	10 ¹¹ -> 10 ¹²	Ar,SF ₆	0.165	Sheath characteristics in a magnetically filtered low density low temperature multicomponent plasma with negative ions
Hot Cathode Plasma	1013	Ar	0.8	Matched dipole probe for magnetized low electron density laboratory plasma diagnostics
Hot Cathode Plasma	10 ¹² -> 10 ¹³	Ar	0.15	lon and electron sheath characteristics in a low density and low temperature plasma
Hybrid – Dual- HiPIMS	10 ¹⁷ -> 10 ¹⁸	Ar,Ti,Cu	3 -> 30	Time-resolved Langmuir probe investigation of hybrid high power impulse magnetron sputtering discharges
ICP	1017	Н	3.75 -> 22.5	Investigation of the power transfer efficiency in a radio- frequency driven negative hydrogen ion source
ICP	10 ¹⁷ -> 10 ¹⁸	Ar	3.75 -> 75	Nonlocal electron kinetics and spatial transport in radio- frequency two-chamber inductively coupled plasmas with argor
ICP	10 ¹⁶ -> 10 ¹⁷	Ar,	10 -> 50	A hybrid model of radio frequency biased inductively coupled plasma discharges: description of model and experimental validation in argon
ICP	10 ¹⁶ -> 10 ¹⁷	Ar,O ₂	10 -> 50	Experimental and numerical investigations on time-resolved characteristics of pulsed inductively coupled O2/Ar plasmas
ICP	1015-> 1017	H,Ar	2 -> 150	Investigation of a Magnetically Enhanced Inductively Coupled Negative Ion Plasma Source
Magnetic Mirror	1016-> 1017	N ₂	0.2 -> 4	Signatures of ring currents in a magnetic mirror plasma experiment
Magnetron	10 ¹⁶ -> 10 ¹⁷	Ar,Cu	0.75 -> 37.5	The erosion groove effects on RF planar magnetron sputtering
Magnetron	2 -> 70 A/m^2	Ar,N ₂ ,Al	3.75	Tunable ion flux density and its impact on AIN thin films deposited in a confocal DC magnetron sputtering system
MAGPIE	10 ¹⁶ -> 10 ¹⁷	Ar	1.4 -> 3	Plasma parameters and electron energy distribution functions in a magnetically focused plasma.
MAGPIE	10 ¹⁶ -> 10 ¹⁷	Н	5 -> 10	Negative hydrogen ion production in a helicon plasma source
MAGPIE	< 10 ¹⁹	Н	10	lon flux dependence of atomic hydrogen loss probabilities on tungsten and carbon surfaces
MW	1014	Ar	150 -> 200	Apparatus for generating quasi-free-space microwave-driven plasmas
NExET	1018	Xe	-	Anode position influence on discharge modes of a LaB6 cathode in diode configuration
PEGASES Thruster	1018	SF ₆ ,Ar,Xe, He,O ₂ ,N ₂	0.75	Plasma drift in a low-pressure magnetized radio frequency discharge
Proton Linear Accelerator	1018 -> 1019	Н	1.125 -> 5	Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probe
Pulsed Laser Deposition	1016	O ₂ ,WO ₃	7.5	Optimization of substrate-target distance for pulsed laser deposition of tungsten oxide thin films using Langmuir probe
Pulsed Laser Deposition	10 ¹⁶ -> 10 ¹⁷	O ₂ ,CeO ₂	7.5	Plasma plume behavior of laser ablated cerium oxide: Effect of oxygen partial pressure
PULVA reactor	1015	Ar,C ₂ H ₂	15 -> 30	Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy
VHF Multi-tile Push-Pull	10 ¹⁶ -> 10 ¹⁷	N ₂	5 -> 25	Nitriding process for next-generation semiconductor devices by VHF (162 MHz) multi-tile push-pull plasma source

Impedans Ltd

Chase House

City Junction Business Park, Northern Cross

Dublin - D17 AK63, Ireland

Tel: +353 1 842 8826

Email: sales@impedans.com

www.impedans.com